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• theory is not programmable.  Progress often comes from exploiting connections between fields/frontiers/disciplines

• nucleon physics is not nuclear physics (not that there’s anything wrong with that) 

• experimental data drives theory.   Demand for precision and quantitative predictions leads to new theoretical 
developments that underpin next generation experiments.     

• theorists must demand error bars from experimenters, who in turn must demand improvements from theory

subtext: intensity frontier theory for its own sake, but also influences broader theory
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• theory is not programmable.  Progress comes from exploiting connections between fields/frontiers/disciplines
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what’s at stake: 
● ~7σ shift in Rydberg + discarding of decades of scattering 
and spectroscopic data ?
● large radiative corrections to leading proton structure ?
● experimental error ? 
● something “new” ? 
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what’s at stake: 
● ~7σ shift in Rydberg + discarding of decades of scattering 
and spectroscopic data ?
● large radiative corrections to leading proton structure ?
● experimental error ? 
● something “new” ? 

would not have asked these questions if not driven by data 

heavy particle effective theory (NRQED of composite particles) 

Lorentz invariance in heavy particle effective theories: 

  ● chiral lagrangian =  nonlinear realization of chiral symmetries 
 
  ● HPEFT = nonlinear (induced) representation of Lorentz symmetry (noncommutative manifold) 

  ● contradicts ~20 year old ansatz of reparameterization invariance, underlying HQET, etc. 

⤷

many consequences and applications: 

● feedback into atomic physics (model independent analysis of rad.corr. to nuclear structure, cf. Friar 1979) 

● nucleon properties, e.g. polarizabilities from lattice QCD,  αstatic, lattice ≠ αscattering, PDG 

● BSM particles, e.g. heavy WIMPs

[Heinonen, Solon, RJH, 1208.0601]

[Lee, Paz, Solon, RJH, 1212.4508]
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Figure 1: Spin-independent cross section for low-velocity scattering on the proton as a func-
tion of mh for the pure triplet. Labels refer to inclusion of LO, NLO, NNLO and NNNLO
corrections in the running from µc to µ0 and in the spin-0 gluon matrix element. Bands repre-
sent 1� uncertainty from neglected higher order pQCD corrections. Subleading perturbative
corrections significantly a↵ect the prediction near the region of strong cancellation.

simplicity we here denote ↵1 ⇠ ↵2 for the U(1)Y and SU(2)W couplings). For mixed states,
tree-level Higgs boson exchange is allowed, implying quark and gluon matching contributions
of O(↵0

s↵
1
2) and O(↵1

s↵
1
2), respectively. We systematically neglect subleading corrections in-

volving light quark masses and contributions to �m induced by electroweak symmetry breaking
(EWSB), which are suppressed by powers of 1/mW .

4 QCD analysis

Having encoded physics of the heavy WIMP sector in the matching coe�cients of (2), the
remaining analysis is independent of the M � mW assumption, and consists of renormalization
group running to a low scale µ0 < mc, matching at heavy quark thresholds, and evaluating
hadronic matrix elements. This module is systematically improvable in subleading corrections
and is applicable to generic direct detection calculations. Renormalization group evolution
accounts for perturbative corrections involving large logarithms, e.g., ↵s(µ0) log mt/µ0.

The cross section predictions are numerically insensitive to the choice of µ0, provided that
the running from µc to µ0 and the spin-0 gluon matrix element, linked to spin-0 quark matrix
elements by (neglecting 1/mc power corrections)

mN = (1� �m)
X

q

hN |mq q̄q|Ni+
�

2g
hN |(Ga

µ⌫)
2|Ni , (5)

are evaluated with NNNLO corrections. We include NLO corrections in the running from
µt to µc and in threshold matching for bottom and charm. Higher order pQCD corrections
are estimated by varying matching scales m2

W /2  µ2
t  2m2

t , m2
b/2  µ2

b  2m2
b , and

m2
c/2  µ2

c  2m2
c , adding uncertainties in quadrature. The cross section and fractional error

are significantly impacted by these subleading perturbative corrections as shown in Fig. 1.
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Figure 3: Spin-independent cross sections for low-velocity scattering on the proton, evaluated
in the nf = 4 flavor theory as a function of the scalar charm content of the nucleon for the
pure triplet (purple) and pure doublet (green). Dark and light bands represent 1� uncertainty
from pQCD and hadronic inputs, respectively. The pink region corresponds to charm content
estimated from pQCD [11], while the regions between orange dashed lines and black dashed
lines correspond to the direct lattice determinations in [12] and [13], respectively.

Previous works [6] have neglected the contribution from spin-2 gluon operators. For pure
states, this leads to an O(10%) shift in the spin-2 amplitude1 and an O(70%) reduction of
its perturbative uncertainty. Given the cancellations at the amplitude level, the spin-2 gluon
contribution is at least an O(1) e↵ect in the cross section, and provides an indispensable
handle on the uncertainty from higher order ↵s(µt) corrections.

6 Mixed state cross sections

The e↵ects of an additional heavy SU(2)W ⇥U(1)Y multiplet (of mass M 0) are suppressed by
the mass splitting � ⌘ (M 0�M)/2. However, the presence of a heavy partner can allow tree
level higgs exchange. Here we systematically analyze the resulting interplay of such power and
loop corrections in the heavy particle limit. The e↵ective field theory analysis given below is
valid in the regime mW , |�|⌧ M, M 0.

Consider a mixture of Majorana SU(2)W singlet of Y = 0 and Dirac SU(2)W doublet of
Y = 1

2 , with masses MS and MD, respectively. As in the pure case, we assume that higher
dimension operators split the Dirac state into Majorana mass eigenstates, D1 and D2. The
heavy-particle lagrangian is given by (1) in terms of the quintuplet of Majorana fermions
hv = (hS, hD1 , hD2), and gauge couplings

T a =

0

B@
0 · ·
· ta�taT

2 � i(ta+taT )
2

· i(ta+taT )
2

ta�taT

2

1

CA , Y =

0

B@
0 · ·
· 2 � i

2 2

· i
2 2 2

1

CA , (9)

1For comparison, neglecting the spin-2 quark contribution for bottom, charm, strange, down and up shifts
the spin-2 amplitude by O(1%), O(10%), O(10%), O(30%) and O(50%), respectively.
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Exciting, challenging time for dark matter searches: 

knowledge of SM parameters and hadronic matrix elements 

⇒ absolute predictions for scattering cross sections of WIMP dark matter
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Figure 4: Breakdown of contributions to the matrix element Mp using the representative
values mh = 120GeV and ⇥lat

�N = 47(9)MeV. The labels u(S), d(S), s(S) and g(S) refer to spin-
S up, down, strange and gluon operator contributions, respectively. The thickness represents
the 1⇤ uncertainty from perturbative QCD. The left-hand vertical band corresponds to the
lattice value ⇥lat

s = 50(8)MeV and the right-hand vertical band corresponds to the range
⇥s = 366(142)MeV deduced from ⇥�N and ⇥0 in Table 1.

a simple model. Using the e⇤ective theory, we demonstrated universality of the mass splitting
induced by electroweak symmetry breaking, and of the cross section for scattering on nuclear
matter. Subleading terms in the 1/M expansion can be studied systematically using (4).

Our focus has been on the case of an isotriplet real scalar [1]. For this case, relic abun-
dance estimates [8] indicate that M � fewTeV in order to not overclose the universe. This
mass range, combined with the universal cross section, provides a target for future search
experiments.

We have presented a complete matching at first nonvanishing order in �s, and at leading
order in small ratios mW/M , mb/mW and �QCD/mc. We performed renormalization group
improvement to sum leading logarithms to all orders. The residual dependence on the high
matching scale µt ⇥ mt ⇥ mW represents uncertainty due to uncalculated higher-order per-
turbative corrections. Assuming the hadronic input ⇥lat

s from Table 1, this scale variation is
the largest remaining uncertainty on the cross section; its reduction would require higher loop
order calculations.

Our high-scale matching results for quark operators (21) and spin-zero gluon operators
agree with mW/M ⇤ 0 results presented by Hisano et al. [30], under the identification
µt = µb = µc, i.e., a one-step matching onto the nf = 3 theory.10 This approach neglects
large logarithms appearing in coe⇧cient functions. The e⇤ective theory analysis provides a

10To make the comparison to the scattering amplitude for a heavy Majorana fermion with � = �c, we use
� =

⇧
2e�imv·x(hv+Hv) =

⇧
2eimv·x(hc

v+Hc
v), where hv and Hv are spinor fields with (1�v/ )hv = (1+v/ )Hv =

0.
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⤷ heavy WIMP effective theory 

● WIMPs plausibly heavy compared to mW, mZ (maybe not extremely small, cf. mh/mt )

● analog of heavy-quark spin-flavor symmetry: 

● BSM particles, e.g. heavy WIMPs
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Figure 1: Matching condition for quark operators. Double lines denote heavy scalars, zigzag
lines denote W bosons, dashed lines denote Higgs bosons, single lines with arrows denote
quarks, and the solid square denotes an e↵ective theory vertex. Diagrams with crossed W
lines are not displayed.

with derivatives acting on �v or involving �5, since these lead to spin-dependent interactions
that are suppressed for low-velocity scattering. The basis of operators is then

L�0,SM =
1

m3
W

�⇤
v�v

⇢X

q


c(0)1q O

(0)
1q + c(2)1q vµv⌫O

(2)µ⌫
1q

�
+ c(0)2 O(0)

2 + c(2)2 vµv⌫O
(2)µ⌫
2

�
+ . . . , (19)

where we have chosen QCD operators of definite spin,

O(0)
1q = mq q̄q , O(0)

2 = (GA
µ⌫)

2 ,

O(2)µ⌫
1q = q̄

✓
�{µiD⌫} � 1

d
gµ⌫iD/

◆
q , O(2)µ⌫

2 = �GAµ�GA⌫
� +

1

d
gµ⌫(GA

↵�)
2 . (20)

Here A{µB⌫} ⌘ (AµB⌫ + A⌫Bµ)/2 denotes symmetrization. We employ dimensional regu-
larization with d = 4 � 2✏ the spacetime dimension. We use the background field method
for gluons in the e↵ective theory thus ignoring gauge-variant operators, and assume that ap-
propriate field redefinitions are employed to eliminate operators that vanish by leading order
equations of motion. The matrix elements of the gluonic operators, O(S)

2 , are numerically
large, representing a substantial contribution of gluons to the energy and momentum of the
nucleon. To account for the leading contributions from both quark and gluon operators, we
compute the coe�cients c(S)2 through O(↵s) and c(S)1q through O(↵0

s).

4 Weak scale matching

The matching conditions for quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ⇠ mt ⇠ mW ⇠ mh are obtained from the diagrams in Fig. (1):

c(0)1U(µt) = C

� 1

x2
h

�
, c(0)1D(µt) = C


� 1

x2
h

� |VtD|2 xt

4(1 + xt)3

�
,

c(2)1U(µt) = C

2

3

�
, c(2)1D(µt) = C


2

3
� |VtD|2xt(3 + 6xt + 2x2

t )

3(1 + xt)3

�
, (21)

where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇡↵2
2(µt)][J(J +

1)/2], xh ⌘ mh/mW and xt ⌘ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.

6

(self-conjugate, spin-independent case)

→ complete results for the leading weak-scale matching coefficients

ci(mW ,M) = c(0)i + c(1)i

mW

M
+ . . .

- hydrogen spectroscopy 

En(H) = �1

2
me↵

2 + . . .
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- heavy meson transitions 

- DM interactions
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Figure 3: Cross section for low-velocity scattering on a nucleon for a heavy real scalar in the
isospin J = 1 representation of SU(2). The dark shaded region represents the 1� uncertainty
from perturbative QCD, estimated by varying factorization scales. The light shaded region
represents the 1� uncertainty from hadronic inputs.

including contributions to �/g through O(↵4
s) and �m through O(↵3

s). The residual µ0 scale
variation is insignificant compared to other uncertainties. We perform the RG running and
heavy quark matching from µt to µc at NLO. Hadronic input uncertainties from each source
in Table 1 and Table 2 are added in quadrature. We have ignored power corrections appearing
at relative order ↵s(mc)⇤2

QCD/m
2
c ; typical numerical prefactors appearing in the coe�cients of

the corresponding power-suppressed operators [18] suggest that these e↵ects are small.
Due to a partial cancellation between spin-0 and spin-2 matrix elements, the total cross

section and the fractional error depend sensitively on subleading perturbative corrections and
on the Higgs mass parameter mh. We find

�p(mh = 120GeV) = 0.7±0.1+0.9
�0.3⇥10�47cm2 , �p(mh = 140GeV) = 2.4±0.2+1.5

�0.6⇥10�47cm2 ,
(33)

where the first error is from hadronic inputs, assuming ⌃lat
s and ⌃lat

⇡N from Table 1, and the
second error represents the e↵ect of neglected higher order perturbative QCD corrections. For
the illustrative value mh = 120GeV, and as a function of the scalar strange-quark matrix
element ⌃s, we display the separate contributions of each of the quark and gluon operators in
Fig. 4.

7 Summary

We have presented the e↵ective theory for heavy, weakly interacting dark matter candidates
charged under electroweak SU(2). Having determined the general form of the e↵ective la-
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hadronic uncertainties matter subleading perturbative QCD matters mixing with massive states treated similarly
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Figure 4: Spin-independent cross sections for low-velocity scattering on the proton, for singlet-
doublet (left panel) and doublet-triplet (right panel) mixtures, as a function of the dimen-
sionless combination �/[(4⇡)2mW ]. Corresponding pure state limits are at � = ±1, as
indicated. Dark and light bands represent 1� uncertainties from pQCD and hadronic inputs,
respectively. Red, orange, and purple curves use  values 1, 0.1, and 0.01, as labelled. Red
curves are shown in the inset plots, which have the same axis units.

residual mass matrix is M + �m = diag(MT , MT , MT , MD, MD, MD, MD), and after projection
with v/ hv = hv, the remaining couplings to the Higgs field are

f(H) =
g21p

2

0

B@
0 H†⌧ �HT ⌧̄ i(�HT ⌧̄ �H†⌧ )

�⌧̄H⇤ + ⌧H 2 2

i(⌧H + ⌧̄H⇤) 2 2

1

CA+
g22p

2

 
H ! �iH

!
, (13)

where ⌧ = (⌧ 1, ⌧ 2, ⌧ 3) and ⌧̄ = (⌧ 1 T , ⌧ 2 T , ⌧ 3 T ). Upon accounting for EWSB, �m can be
diagonalized to

�mD = diag(�1, �2, 0, �2, 0, �2, 0), �1 =
q

4m2
W 2 + �2 ��, �2 = 2

q
4m2

W 2 + �2, (14)

where  ⌘
p

2
1 + 2

2, � ⌘ (MT�MD)/2 and the charge matrix is Q = diag(0, 0, 0, 1, 1,�1,�1).
We have again chosen the residual mass of �v to be zero. In this basis, the gauge and
Higgs couplings depend on  and �, and there is a vertex, ⇠ i sin ⇢ �̄v�vh0, with sin ⇢ ⌘
2/
p

42 + �2/m2
W .

We take the same range of values for  and �, where � = ±1 corresponds to the
pure doublet and pure triplet cases, respectively. The weak scale matching computation and
required renormalization are similar to the singlet-doublet case, with additional contributions
from integrating out heavy charged states. We again simplify the analysis by neglecting
contributions of O(↵2

2  sin ⇢).
The resulting mixed state cross sections are displayed in Fig. 4. The presence of a scale

separation M, M 0 � mW , implies that the partner state contributes at leading order when
|�|/mW = O(1), or more precisely |�|/[(4⇡)2mW ] = O(1). Within this regime, the purely
spin-0, O(↵1

2) contributions from tree-level Higgs exchange may dominate. However, when

8

→absolute predictions, with error bars[Solon, RJH 1111.0016]
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heavy meson processes

⤷ theory developments 

• theory is not programmable.  Progress comes from exploiting connections between fields/frontiers/disciplines
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Table I Maximum |z(t, t0)| throughout semileptonic

range with symmetrizing choice t0 = t+(1−
√

1 − t−/t+).

Process CKM element |z|max

π+ → π0 Vud 3.5 × 10−5

B → D Vcb 0.032

K → π Vus 0.047

D → K Vcs 0.051

D → π Vcd 0.17

B → π Vub 0.28

have about the form factors, following just from kine-
matics without dynamics. Pseudoscalar-pseudoscalar
transitions between “heavy-light”, nonsinglet mesons
are particularly simple and are the main focus. 3

Rigorous power-counting arguments provide the basis
for a powerful expansion based on analyticity. Sec-
tion 3 illustrates how the experimental data is simpli-
fied by making use of this expansion. In particular,
we find the remarkable conclusion that in terms of
standard variables, no semileptonic meson form fac-
tor has ever been observed to deviate from a straight
line. Given that the form factors are indistinguishable
from straight lines, if the shape of the semileptonic
spectrum is to provide insight on QCD, it must be
through the slope of the form factor; in fact, a clear
but unsolved question in QCD translates directly into
the numerical value of this slope in an appropriate
limit, as described in Section 4. Phenomenological
implications in the B → π system are considered in
Section 5. The methodology described here provides
a convenient framework in which to understand pre-
cisely what measurements in the charm system can,
and cannot, say that is relevant to the bottom sys-
tem, as discussed in Section 6. Section 7 outlines the
extension to pseudoscalar-vector transitions.

2. Analyticity and crossing symmetry

An oft-cited downside of old and well-known
dispersion-relation arguments is that the results are
too general, and do not make specific predictions for
detailed dynamics. In fact, precisely these properties
make them useful to the problem at hand—it is essen-
tial to make some statement on the possible functional
form of the form factors, yet we do not want to make
assumptions, explicit or implicit, on the dynamics.

The analytic structure of the form factors can be

3The nonsinglet restriction ensures that only a single topol-
ogy is relevant as in Figure 1.

zt

Figure 2: Mapping (3) of the cut t plane onto the unit
circle. The semileptonic region is represented by the blue
line.

investigated by standard means. 4 Let us focus on
the form factors for pseudoscalar-pseudoscalar transi-
tions, defined by the matrix element of the relevant
weak vector current, (q ≡ p − p′)

〈L(p′)|V µ|H(p)〉
= F+(q2) (pµ + p′µ) + F−(q2)qµ

= F+(q2)

(

pµ + p′µ −
m2

H − m2
L

q2
qµ

)

+F0(q
2)

m2
H − m2

L

q2
qµ . (1)

To ensure that there is no singularity at q2 = 0, the
form factors obey the constraint

F+(0) = F0(0) . (2)

Ignoring possible complications from anomalous
thresholds or subthreshold resonances, to be discussed
below, the form factors F (t = q2) can be extended
to analytic functions throughout the complex t plane,
except for a branch cut along the positive real axis,
starting at the point t = t+ [t± ≡ (mH ±mL)2] corre-
sponding to the threshold for production of real H̄L
pairs in the crossed channel. By a standard transfor-
mation, as illustrated in Figure 2, the cut t plane is
mapped onto the unit circle |z| ≤ 1,

z(t, t0) ≡
√

t+ − t −
√

t+ − t0√
t+ − t +

√
t+ − t0

, (3)

where t0 is the point mapping onto z = 0. The iso-
lation of the semileptonic region from singularities in
the t plane implies that |z| < 1 throughout this re-
gion. Choosing t0 = t+(1 −

√

1 − t−/t+) minimizes
the maximum value of |z|; for typical decays these
maximum values are given in Table I.

Since the form factor is analytic, it may be ex-
panded,

F (t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0)z(t, t0)
k , (4)

4For a general discussion, see e.g. [3]. For early work on
applications to semileptonic form factors, see [4, 5, 6, 7, 8, 9, 10].
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×
(

z(t,−Q2)

−Q2 − t

)3/2 (

z(t, t0)

t0 − t

)−1/2

×
(

z(t, t−)

t− − t

)−3/4

,

φF0
(t, t0) =

√

ηt+t−
16π

√
t+ − t

(t+ − t0)1/4

(

z(t, 0)

−t

)

×
(

z(t,−Q2)

−Q2 − t

) (

z(t, t0)

t0 − t

)−1/2

×
(

z(t, t−)

t− − t

)−1/4

. (10)

The choice of subtracted dispersion relation in (8)
leads to a “default” choice for φ in (10). With
this choice, power counting shows that ak/a0 and
∑

k(a2
k/a2

0) do not scale as powers of large ratios such
as Q/ΛQCD, or mQ/ΛQCD when a heavy-quark mass
is present [53]. This ensures that there is no paramet-
ric enhancement of the coefficients ak that could offset
the smallness of zk in the series (4). In fact, at suffi-
ciently large k the coefficients must decrease in order
that the sum of squares converge. These properties
[analyticity, and ak/a0 ∼

∑

k a2
k/a2

0 ∼ O(1) ] are all
that is required from the choice of φ. The “physical”
prescription following from (8), (9) and (10) automat-
ically ensures that this is the case.

The original motivation for considering the operator
product expansion (OPE) in (7) is to place a restric-
tion on the coefficients in (5) according to (χ = χF+,0

as appropriate)

∞
∑

k=0

a2
k ≤ χ(Q2) . (11)

However, in order that an OPE expansion for χ(Q2)
converge, Q2 (or m2

Q + Q2 when a heavy-quark is
present) must necessarily be large compared to ΛQCD.
This results in a bound that is typically overestimated
by some power of the large ratio of perturbative to
hadronic scales. In practice, the numerical value for
the bound (11) itself is largely irrelevant. What is im-
portant is that the choice of φ which it motivates has
the desired properties.

Having chosen a “default” φ, for definiteness, we
will also take Q = 0 in (10) as the “default” choice,
and where a particular choice is necessary, t0 = t+(1−
√

1 − t−/t+).

3. What the data say

Table I can be used to predict the level of precision
at which slope, curvature, and higher-order correc-
tions can be resolved by the data. With the “default”
values of Q and t0, Table II shows the results for a1/a0

obtained from data. Except where indicated, modes
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Figure 3: Experimental data for F+ in B → π"ν, as a
function of t, and for the function PφF+ as a function of
z. Partial branching fractions have been converted to
values of the form factor at the midpoint of each bin in t
from [12]. Units on the vertical axis are arbitrary
(approximately normalized to unity at t = 0).

related by isospin are combined. For the K → π
case, the results of [14, 15, 16, 17] were presented as a
simple quadratic Taylor expansion of the form factor
about t = 0. 7 These results have been converted to
the quadratic z parameterization in (4), by identifying
the Taylor series at t = 0, and propagating errors lin-
early. For B → D, the results of [13] were presented
in terms of a parameterization obtained by expand-
ing φ and P as a Taylor series in z [9]. The result in
Table II is obtained by converting to the linear z pa-
rameterization in (4), with three subthreshold “B∗

c ”
poles located at m = 6.337, 6.899, 7.012 GeV [9, 24],

7It is desirable to fit the data directly to (4), to avoid biases
introduced by the truncated t series [23].
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Figure 3: Experimental data for F+ in B → π"ν, as a
function of t, and for the function PφF+ as a function of
z. Partial branching fractions have been converted to
values of the form factor at the midpoint of each bin in t
from [12]. Units on the vertical axis are arbitrary
(approximately normalized to unity at t = 0).

related by isospin are combined. For the K → π
case, the results of [14, 15, 16, 17] were presented as a
simple quadratic Taylor expansion of the form factor
about t = 0. 7 These results have been converted to
the quadratic z parameterization in (4), by identifying
the Taylor series at t = 0, and propagating errors lin-
early. For B → D, the results of [13] were presented
in terms of a parameterization obtained by expand-
ing φ and P as a Taylor series in z [9]. The result in
Table II is obtained by converting to the linear z pa-
rameterization in (4), with three subthreshold “B∗

c ”
poles located at m = 6.337, 6.899, 7.012 GeV [9, 24],

7It is desirable to fit the data directly to (4), to avoid biases
introduced by the truncated t series [23].
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Table I Maximum |z(t, t0)| throughout semileptonic

range with symmetrizing choice t0 = t+(1−
√

1 − t−/t+).

Process CKM element |z|max

π+ → π0 Vud 3.5 × 10−5

B → D Vcb 0.032

K → π Vus 0.047

D → K Vcs 0.051

D → π Vcd 0.17

B → π Vub 0.28

have about the form factors, following just from kine-
matics without dynamics. Pseudoscalar-pseudoscalar
transitions between “heavy-light”, nonsinglet mesons
are particularly simple and are the main focus. 3

Rigorous power-counting arguments provide the basis
for a powerful expansion based on analyticity. Sec-
tion 3 illustrates how the experimental data is simpli-
fied by making use of this expansion. In particular,
we find the remarkable conclusion that in terms of
standard variables, no semileptonic meson form fac-
tor has ever been observed to deviate from a straight
line. Given that the form factors are indistinguishable
from straight lines, if the shape of the semileptonic
spectrum is to provide insight on QCD, it must be
through the slope of the form factor; in fact, a clear
but unsolved question in QCD translates directly into
the numerical value of this slope in an appropriate
limit, as described in Section 4. Phenomenological
implications in the B → π system are considered in
Section 5. The methodology described here provides
a convenient framework in which to understand pre-
cisely what measurements in the charm system can,
and cannot, say that is relevant to the bottom sys-
tem, as discussed in Section 6. Section 7 outlines the
extension to pseudoscalar-vector transitions.

2. Analyticity and crossing symmetry

An oft-cited downside of old and well-known
dispersion-relation arguments is that the results are
too general, and do not make specific predictions for
detailed dynamics. In fact, precisely these properties
make them useful to the problem at hand—it is essen-
tial to make some statement on the possible functional
form of the form factors, yet we do not want to make
assumptions, explicit or implicit, on the dynamics.

The analytic structure of the form factors can be

3The nonsinglet restriction ensures that only a single topol-
ogy is relevant as in Figure 1.

zt

Figure 2: Mapping (3) of the cut t plane onto the unit
circle. The semileptonic region is represented by the blue
line.

investigated by standard means. 4 Let us focus on
the form factors for pseudoscalar-pseudoscalar transi-
tions, defined by the matrix element of the relevant
weak vector current, (q ≡ p − p′)

〈L(p′)|V µ|H(p)〉
= F+(q2) (pµ + p′µ) + F−(q2)qµ

= F+(q2)

(

pµ + p′µ −
m2

H − m2
L

q2
qµ

)

+F0(q
2)

m2
H − m2

L

q2
qµ . (1)

To ensure that there is no singularity at q2 = 0, the
form factors obey the constraint

F+(0) = F0(0) . (2)

Ignoring possible complications from anomalous
thresholds or subthreshold resonances, to be discussed
below, the form factors F (t = q2) can be extended
to analytic functions throughout the complex t plane,
except for a branch cut along the positive real axis,
starting at the point t = t+ [t± ≡ (mH ±mL)2] corre-
sponding to the threshold for production of real H̄L
pairs in the crossed channel. By a standard transfor-
mation, as illustrated in Figure 2, the cut t plane is
mapped onto the unit circle |z| ≤ 1,

z(t, t0) ≡
√

t+ − t −
√

t+ − t0√
t+ − t +

√
t+ − t0

, (3)

where t0 is the point mapping onto z = 0. The iso-
lation of the semileptonic region from singularities in
the t plane implies that |z| < 1 throughout this re-
gion. Choosing t0 = t+(1 −

√

1 − t−/t+) minimizes
the maximum value of |z|; for typical decays these
maximum values are given in Table I.

Since the form factor is analytic, it may be ex-
panded,

F (t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0)z(t, t0)
k , (4)

4For a general discussion, see e.g. [3]. For early work on
applications to semileptonic form factors, see [4, 5, 6, 7, 8, 9, 10].
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The choice of subtracted dispersion relation in (8)
leads to a “default” choice for φ in (10). With
this choice, power counting shows that ak/a0 and
∑

k(a2
k/a2

0) do not scale as powers of large ratios such
as Q/ΛQCD, or mQ/ΛQCD when a heavy-quark mass
is present [53]. This ensures that there is no paramet-
ric enhancement of the coefficients ak that could offset
the smallness of zk in the series (4). In fact, at suffi-
ciently large k the coefficients must decrease in order
that the sum of squares converge. These properties
[analyticity, and ak/a0 ∼

∑

k a2
k/a2

0 ∼ O(1) ] are all
that is required from the choice of φ. The “physical”
prescription following from (8), (9) and (10) automat-
ically ensures that this is the case.

The original motivation for considering the operator
product expansion (OPE) in (7) is to place a restric-
tion on the coefficients in (5) according to (χ = χF+,0

as appropriate)

∞
∑

k=0

a2
k ≤ χ(Q2) . (11)

However, in order that an OPE expansion for χ(Q2)
converge, Q2 (or m2

Q + Q2 when a heavy-quark is
present) must necessarily be large compared to ΛQCD.
This results in a bound that is typically overestimated
by some power of the large ratio of perturbative to
hadronic scales. In practice, the numerical value for
the bound (11) itself is largely irrelevant. What is im-
portant is that the choice of φ which it motivates has
the desired properties.

Having chosen a “default” φ, for definiteness, we
will also take Q = 0 in (10) as the “default” choice,
and where a particular choice is necessary, t0 = t+(1−
√

1 − t−/t+).

3. What the data say

Table I can be used to predict the level of precision
at which slope, curvature, and higher-order correc-
tions can be resolved by the data. With the “default”
values of Q and t0, Table II shows the results for a1/a0

obtained from data. Except where indicated, modes
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Figure 3: Experimental data for F+ in B → π"ν, as a
function of t, and for the function PφF+ as a function of
z. Partial branching fractions have been converted to
values of the form factor at the midpoint of each bin in t
from [12]. Units on the vertical axis are arbitrary
(approximately normalized to unity at t = 0).

related by isospin are combined. For the K → π
case, the results of [14, 15, 16, 17] were presented as a
simple quadratic Taylor expansion of the form factor
about t = 0. 7 These results have been converted to
the quadratic z parameterization in (4), by identifying
the Taylor series at t = 0, and propagating errors lin-
early. For B → D, the results of [13] were presented
in terms of a parameterization obtained by expand-
ing φ and P as a Taylor series in z [9]. The result in
Table II is obtained by converting to the linear z pa-
rameterization in (4), with three subthreshold “B∗

c ”
poles located at m = 6.337, 6.899, 7.012 GeV [9, 24],

7It is desirable to fit the data directly to (4), to avoid biases
introduced by the truncated t series [23].
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Figure 3: Experimental data for F+ in B → π"ν, as a
function of t, and for the function PφF+ as a function of
z. Partial branching fractions have been converted to
values of the form factor at the midpoint of each bin in t
from [12]. Units on the vertical axis are arbitrary
(approximately normalized to unity at t = 0).

related by isospin are combined. For the K → π
case, the results of [14, 15, 16, 17] were presented as a
simple quadratic Taylor expansion of the form factor
about t = 0. 7 These results have been converted to
the quadratic z parameterization in (4), by identifying
the Taylor series at t = 0, and propagating errors lin-
early. For B → D, the results of [13] were presented
in terms of a parameterization obtained by expand-
ing φ and P as a Taylor series in z [9]. The result in
Table II is obtained by converting to the linear z pa-
rameterization in (4), with three subthreshold “B∗

c ”
poles located at m = 6.337, 6.899, 7.012 GeV [9, 24],

7It is desirable to fit the data directly to (4), to avoid biases
introduced by the truncated t series [23].
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FIG. 15: (Color online). Flux-unfolded MiniBooNE νµ CCQE
cross section per neutron as a function of neutrino energy. In
(a), shape errors are shown as shaded boxes along with the
total errors as bars. In (b), a larger energy range is shown
along with results from the LSND [56] and NOMAD [10] ex-
periments. Also shown are predictions from the nuance sim-
ulation for an RFG model with two different parameter vari-
ations and for scattering from free nucleons with the world-
average MA value. Numerical values are provided in Table X
in the Appendix.

CCQE parameters underpredicts the measured differen-
tial cross section values by 20 − 30%, while the model
using the CCQE parameters extracted from this shape
analysis are within ≈ 8% of the data, consistent within
the normalization error (≈ 10%). To further illustrate
this, the model calculation with the CCQE parameters
from this analysis scaled by 1.08 is also plotted and shown
to be in good agreement with the data.

C. Flux-unfolded CCQE cross section as a function
of neutrino energy

The flux-unfolded CCQE cross section per neutron,
σ[EQE,RFG

ν ], as a function of the true neutrino energy,
EQE,RFG

ν , is shown in Figure 15. These numerical values
are tabulated in Table X in the Appendix. The quantity
EQE,RFG

ν is a (model-dependent) estimate of the neu-
trino energy obtained after correcting for both detector
and nuclear model resolution effects. These results de-
pend on the details of the nuclear model used for the cal-
culation. The dependence is only weak in the peak of the
flux distribution but becomes strong for Eν < 0.5 GeV
and Eν > 1.2 GeV, i.e., in the “tails” of the flux distri-
bution.
In Figure 15, the data are compared with the nuance

implementation of the RFGmodel with the world average
parameter values, (M eff

A = 1.03 GeV, κ = 1.000) and
with the parameters extracted from this work (M eff

A =
1.35 GeV, κ = 1.007). These are absolute predictions
from the model (not scaled or renormalized). At the

source normalization error (%)

neutrino flux prediction 8.66

background cross sections 4.32

detector model 4.60

kinematic unfolding procedure 0.60

statistics 0.26

total 10.7

TABLE IV: Contribution to the total normalization uncer-
tainty from each of the various systematic error categories.

average energy of the MiniBooNE flux (≈ 800 MeV), the
extracted cross section is ≈ 30% larger than the RFG
model prediction with world average parameter values.
The RFG model, with parameter values extracted from
the shape-only fit to this data better reproduces the data
over the entire measured energy range.
Figure 15(b) shows these CCQE results together with

those from the LSND [56] and NOMAD [10] experiments.
It is interesting to note that the NOMAD results are bet-
ter described with the world-average M eff

A and κ values.
Also shown for comparison in Fig. 15(b) is the predicted
cross section assuming the CCQE interaction occurs on
free nucleons with the world-averageMA value. The cross
sections reported here exceed the free nucleon value for
Eν above 0.7 GeV.

D. Error Summary

As described in Section IVE, (correlated) systematic
and statistical errors are propagated to the final results.
These errors are separated into normalization and shape
uncertainties. The contributions from each error source
on the total normalization uncertainty are summarized
in Table IV. As is evident, the neutrino flux uncer-
tainty dominates the overall normalization error on the
extracted CCQE cross sections. However, the uncer-
tainty on the flux prediction is a smaller contribution
to the shape error on the cross sections. This can be
seen in Figure 16 which shows the contribution from the
four major sources to the shape error on the total (flux-
unfolded) cross section.
The detector model uncertainty dominates the shape

error, especially at low and high energies. This is because
errors in the detector response (mainly via uncertain-
ties in visible photon processes) will result in errors on
the reconstructed energy. These errors grow in the tails
of the neutrino flux distribution due to feed-down from
events in the flux peak. This type of measurement usu-
ally has large errors due to non-negligible uncertainties
in the CC1π+ background predictions. In this measure-
ment, that error is reduced through direct measurement
of the CC1π+ background. However, this error is not
completely eliminated due to the residual uncertainty on
the rate of intranuclear pion absorption that is included.
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Figure 5: Values of the axial mass parameter mA extracted from neutrino scattering experi-
ments, taken from the compilation in [56]. The gray band represents the world average value
from pion electroproduction taken from [57]. The most recent MiniBooNE extraction from
neutrino quasi-elastic data is from [58] and from neutral current neutrino data is from [59].

2.2.3 Non-relativistic effective theory analysis of proton structure

A complete resolution of the discrepancy between the proton charge radius determined from
muonic hydrogen and from electronic hydrogen or electron-proton scattering may involve
revisiting the bound state analysis. A systematic approach is provided by matching the
QCD/QED problem onto a nonrelativistic field theory, NRQED [32], or onto (fixed particle
number) quantum mechanics [39, 40, 71]. Elements of this analysis include

• Identification of the “contact” interaction parameters in the NRQED lagrangian that are
determined by particular one-photon exchange and two-photon exchange scattering matrix
elements for e−p → e−p (or µ−p → µ−p in the case of muonic hydrogen). Note that matching
onto the effective theory does not involve nonperturbative bound state computations.

• Careful treatment of the two-photon exchange contribution using dispersion analysis, with
appropriate subtractions, to isolate the elastic (single proton intermediate state) and inelastic
contributions. Proper definition of “Zemach” moments that parameterize the two-photon
exchange contribution.

10

muon g-2, ... 
4

Q2
QE (GeV2) I II III IV V VI Total

0.0 � 0.025 0.06 0.04 0.02 0.04 0.09 0.03 0.13

0.025 � 0.05 0.06 0.03 0.02 0.03 0.09 0.02 0.12

0.05 � 0.1 0.06 0.03 0.02 0.03 0.09 0.02 0.12

0.1 � 0.2 0.06 0.03 0.03 0.02 0.09 0.02 0.11

0.2 � 0.4 0.05 0.02 0.03 0.03 0.09 0.01 0.11

0.4 � 0.8 0.05 0.03 0.04 0.04 0.09 0.01 0.13

0.8 � 1.2 0.08 0.07 0.07 0.15 0.09 0.02 0.22

1.2 � 2.0 0.12 0.07 0.07 0.16 0.09 0.02 0.24

TABLE I: Fractional systematic uncertainties on d�/dQ2
QE

associated with (I) muon reconstruction, (II) recoil recon-
struction, (III) neutrino interaction models, (IV) final state
interactions, (V) flux and (VI) other sources. The rightmost
column shows the total fractional systematic uncertainty due
to all sources.

Q2
QE Cross-section Fraction of

(GeV2) (10�38cm2/GeV2/neutron) Cross-section (%)

0.0 � 0.025 0.761 ± 0.035 ± 0.097 2.15 ± 0.10 ± 0.17

0.025 � 0.05 1.146 ± 0.047 ± 0.137 3.24 ± 0.13 ± 0.22

0.05 � 0.1 1.343 ± 0.034 ± 0.156 7.60 ± 0.19 ± 0.50

0.1 � 0.2 1.490 ± 0.028 ± 0.170 16.85 ± 0.32 ± 1.04

0.2 � 0.4 1.063 ± 0.019 ± 0.120 24.06 ± 0.43 ± 1.06

0.4 � 0.8 0.582 ± 0.013 ± 0.074 26.33 ± 0.58 ± 0.85

0.8 � 1.2 0.242 ± 0.014 ± 0.053 10.95 ± 0.64 ± 1.45

1.2 � 2.0 0.097 ± 0.008 ± 0.024 8.81 ± 0.71 ± 1.43

TABLE II: Flux-averaged di↵erential cross-sections and the
fraction of the cross-section in bins of Q2

QE . In each measure-
ment, the first error is statistical and the second is systematic.

strained by test beam measurements [38]), the Birk’s law
constant discussed above, and GENIE’s final state in-
teractions model. The latter is evaluated by varying the
underlying model tuning parameters within their system-
atic uncertainties.

The measured di↵erential cross-section d�/dQ

2
QE is

shown in Table II and Fig. 3. Integrating over the flux
from 1.5 to 10 GeV, we find3 � = 0.93 ± 0.01(stat) ±
0.11(syst)⇥10�38 cm2

/neutron. Figures 3 and 4 and Ta-
ble III compare the data to the RFG model in the GENIE
event generator and a set of calculations made with the
NuWro generator [19].

Di↵erent models of nuclear e↵ects in quasi-elastic scat-
tering lead to significant variations in the shape of
d�/dQ

2 from the expectation of the RFG model. In
particular, correlations between nucleons not considered
in the mean field RFG approach are predicted to con-
tribute to the cross-section at neutrino energies below
2 GeV [28–30]. Figure 4 compares the shape of the mea-
sured cross section to five di↵erent models of the quasi-
elastic process on carbon. The GENIE prediction, based
on a RFG nuclear model and dipole axial form factor
with MA = 0.99 GeV, is taken as a reference; the data
and other models are normalized to have the same to-
tal cross section across the range shown before forming
the ratio. The NuWro calculations utilize an axial-vector
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FIG. 3: Neutrino quasi-elastic cross-section as a function of
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FIG. 4: Ratio between the measured neutrino d�/dQ2
QE

shape in Q2
QE and several di↵erent models, where the denom-

inator is the GENIE default quasi-elastic cross-section.

form factor parameterized with a dipole form that has
one free parameter, the axial mass MA, and also in-
corporate di↵erent corrections for the nuclear medium.
There is little sensitivity to replacement of the Fermi gas
with a spectral function (SF) model of the target nucleon
energy-momentum relationship [31]. The neutrino data
are marginally more compatible, at least in Q

2
QE shape,

with a higher axial mass extracted from fits of the Mini-
BooNE neutrino quasi-elastic data in the RFG model
(MA = 1.35GeV/c2) [22] than with that extracted from
deuterium data (MA = 0.99GeV/c2). As with the cor-
responding antineutrino results [35], our data are in best
agreement with a transverse enhancement model (TEM)
with MA = 0.99GeV/c2. This model implements an en-
hancement of the magnetic form factors of bound nucle-
ons that has been extracted from electron-carbon scat-
tering data [27], and is the only one of this type that is
applicable at neutrino energies above 2 GeV. Table III
shows a comparison using �

2 values between the mea-

j!akj & 0:011þ 0:004 for the proton, and j!akj &
0:013þ 0:025 for the neutron. We conclude that when
estimating the bounds on coefficients, the physical timelike
region can be safely neglected.

Let us mention that we can bound the contribution of the
physical timelike region by a perturbative quark-level
computation. Decompose the electromagnetic current cor-
relation function as

!"#ðqÞ ¼ i
Z

d4xeiq%xh0jTfJ"emðxÞ; J#emð0Þgj0i

¼ ðq"q# & q2g"#Þ!ðq2Þ; (27)

and define

$ðQ2
OPEÞ ¼

1

2

@2

@ðq2Þ2 ðq
2!ðq2ÞÞjq2¼&Q2

OPE

¼ 1

%

Z 1

t0

dt
tIm!ðtÞ

ðtþQ2
OPEÞ3

: (28)

The two-nucleon contribution to the correlator satisfies

Im!ðtÞ ' m2
N

6%t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& 4m2

N

t

s
j&GEj2; (29)

and hence with&GE ¼ P
kakz

k and the choice of& in (23),

$ðQ2
OPEÞ '

1

%

Z 1

4m2
N

dt

t& t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut & t0
t& tcut

s

( j&GEj2 ' !k&GEk22: (30)

If we choose Q2
OPE large enough, the function $ðQ2

OPEÞ is
perturbatively calculable as an operator product expansion:
$ ) P

fe
2
f=8%

2Q2
OPE at leading order, where ef denotes the

electric charge of a given quark flavor. Choosing for
illustration Q2

OPE ¼ 1 GeV2, nf ¼ 3 light quark flavors,
and tcut ¼ 4m2

%, we find the bounds !ðPka
2
kÞ * ð1:0Þ2 for

t0 ¼ 0 and !ðPka
2
k=a

2
0Þ * ð1:4Þ2 for t0 ¼ topt0 ð0:5 GeV2Þ.

We note that these ‘‘unitarity bounds’’ overestimate the
contribution from the physical region t ' 4m2

N , due both
to subthreshold resonance production, and to other chan-
nels, e.g., N "N plus pions, above threshold. For this reason,
we do not dwell on a more precise analysis of this bound, or
on a separation into definite isospin channels.

IV. PROTON CHARGE RADIUS EXTRACTION

We consider several possibilities to reduce the error bars
for the proton charge radius extracted in Sec. II. We first
consider the inclusion of higher-Q2 data. We then optimize
the charge radius extraction by separating isoscalar and
isovector components, recognizing that the isoscalar thresh-
old is at 9m2

%. At the same time, we illustrate the (small)
effect of different expansion schemes. Finally, we consider
the possibility to effectively raise the isovector threshold by
constraining the spectral function between 4m2

% and 16m2
%.

A. Including higher Q2 data

We have argued that, taking the data tabulated in
[18] at face value, the final entry in Table I is a model-
independent determination of the proton charge radius:
rpE ¼ 0:878þ0:039

&0:062 fm. In the absence of further model-
independent constraints on the form factors, obtaining a
proton charge radius with smaller error requires further
experimental input. Here we investigate the impact of
higher-Q2 proton scattering data.
Figure 3 shows the central value and 1' (#$2 ¼ 1) error

band obtained by fitting the electron-proton scattering
data compiled by Arrington et al. [34]. We take & ¼ 1
and t0 ¼ 0, and include as many coefficients ak as neces-
sary for the fits to stabilize. As the figure illustrates, for
Q2 * few( 0:1 GeV2 the impact of additional data is
minimal. While an ever greater number of coefficients ak
at higher k must be included to obtain convergence, the
total error on the slope at Q2 ¼ 0 is not reduced. For later
use, we note that the coefficients ak¼1;2;3 extracted from the
fit at Q2

max ¼ 1 GeV2 are &1:01ð6Þ, &1:4þ1:1
&0:7, 2

þ2
&6.

B. Raising the isoscalar threshold:
inclusion of neutron data

We can separate the isoscalar from the isovector form
factor, making use of the fact that the isoscalar cut is
further away from t ¼ 0 than the isovector cut, translating
to a smaller value of jzjmax as discussed in the Introduction.
A combined fit of proton and neutron data can then be
performed. For the proton form factor we again use the
data from [34]. For the neutron electric form factor, we use
20 data points from [35–46]. We take as additional input
the neutron charge radius from neutron-electron scattering
length measurements [5]:

hr2inE ¼ &0:1161ð22Þ fm2: (31)

Table III shows the effect of different expansion schemes
(choices of & and t0) and coefficient bounds on the
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FIG. 3. Variation of the fitted proton charge radius as a func-
tion of maximum Q2. Fits of the proton data were performed
with kmax ¼ 10, & ¼ 1, t0 ¼ 0, jakj + 10. Data are from [34].
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the RFG model with free parameter εb yields the value, without an assumption on the value
of mA, (for Q2

max = 1.0GeV2, kmax = 7)

εb = 28± 3MeV , (22)

where the result is insensitive to the choice of bound, |ak| ≤ 5 or |ak| ≤ 10.4 While the data
do not appear to favor significantly higher values of εb, we note that for εb = 34MeV [3], the
result (21) becomes mA(εb = 34MeV) = 1.05+0.45

−0.18± 0.12, compared to mdipole
A (εb = 34MeV) =

1.44± 0.05.
We have performed fits at different values of the parameter t0, finding no significant devia-

tion in the results. The results do not depend strongly on the precise value of the bound (e.g.
|ak| ≤ 5 versus |ak| ≤ 10). Similar to [9], we conclude that the estimation of shape uncer-
tainty in (21) should be conservative. The fit (21) yields coefficients5 a0 ≡ FA(0) = −1.269,
a1 = 2.9+1.1

−1.0, a2 = −8+6
−3. These values are in accordance with our assumption of order-unity

coefficient bounds. As discussed in the Introduction, current experiments do not significantly
constrain shape parameters beyond the linear term, a1.
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Figure 3: Comparison of the axial-vector form factor FA as extracted using the z expansion
(green diamonds) and dipole ansatz (red circles).

Figure 3 compares the form factor extraction resulting from the z expansion fit to the
extraction from the dipole fit. Here we take Q2

max = 1.0GeV2, kmax = 7 and |ak| ≤ 10 for the
z fit. The dipole fit assumes mdipole

A = 1.29± 0.05GeV.

4 Comparison to charged pion electroproduction

The axial-vector component of the weak current defining FA(q2) in (3) can also be probed in
pion electroproduction measurements. The electric dipole amplitude for threshold charged-

4 Using a dipole ansatz for Q2
max = 1.0GeV2 without fixing m

dipole
A

yields εb = 22± 7MeV.
5 For this purpose we take kmax = 7 in (9) and enforce |ak| ≤ 10 for k ≥ 3.

8

problems 
solutions

[Paz, RJH, 1008.4619] [Bhattacharya, Paz, RJH, 
1108.0423]

[Minerva,  1305.2243]

Richard  Hill                    University of Chicago                                                     Theory panel discussion, 2 Aug 2013



• theorists must demand error bars from experimenters, who in turn must demand improved theory

• nucleon, nuclear and hadronic physics, including radiative corrections, essential to “Intensity frontier” experiments

efficiency of 30:6! 1:4% for reconstructing signal-like !e

CCQE events [3]. As can be seen from Table I, after
selection cuts the efficiency for events with similar signa-
tures, !"e

" ! !"e
" and !en ! e"p, fall in the range

20%–30% [16]. It can also be seen from this table that
the direct estimate of the number of single-photon events
mediated by !ð1232Þ is larger than the #0-constrained
background estimate of MiniBooNE by a factor % 2
[18]. The effects of a larger incoherent ! ! N$ back-
ground are illustrated by the hatched area in Fig. 1, com-
puted by adding 0.5 times the direct estimate (i.e.,
effectively doubling the MiniBooNE background). Under
the assumption of a constant 25% efficiency, the fit of these
additional single-photon events to the MiniBooNE excess
yields %2 ¼ 10:3 for 10 d.o.f. Theoretical errors are dis-
cussed at the end of this note and have not been included in
the fit. Assuming a lower 20% efficiency and taking the

difference between the estimates of ! ! N$ events from
the table, the remaining excess would be 15! 26, 23! 25
and "47! 36 in the 200–300, 300–475 and 475–
1250 MeV bins, respectively. If no additional incoherent
! ! N$ events are included, these numbers become
29! 26, 55! 25 and "9! 36. The neutron/proton
Compton backgrounds were estimated by MiniBooNE to
be small or negligible [14].
The most significant excess in the updated MiniBooNE

analysis occurred in the EQE ¼ 300–475 MeV bin. The
distributions in reconstructed Q2 [19], and cosine of the
angle, cos&, of the electromagnetic shower with respect to
the beam direction, are displayed for this energy range in
Fig. 2. The normalization assumes an energy- and angle-
independent efficiency of 25%, and includes 0.5 times the
incoherent ! ! N$ background as in Fig. 1. A %2 fit
yields 10:9=10 d.o.f. for cos& and 2:6=7 d.o.f. for Q2

QE.

Note that in the accounting method here, it does
not matter whether the MiniBooNE ! ! N$ background

TABLE I. Single-photon and other backgrounds for
MiniBooNE !-mode in ranges of EQE. Ranges in square brackets
are the result of applying a 20%–30% efficiency correction.

process 200–300 300–475 475–1250

1$, non-! 85[17–26] 151[30, 45] 159[32, 48]
! ! N$ 170[34–51] 394[79–118] 285[57–86]
!"e ! !"e 14[2.7–4.1] 20[4.0–5.9] 40[7.9–12]
!en ! ep 100[20–30] 303[61–91] 1392[278–418]
MB excess 45:2! 26:0 83:7! 24:5 22:1! 35:7
MB ! ! N$ 19.5 47.5 19.4
MB !"e ! !"e 6.1 4.3 6.4
MB !en ! ep 19 62 249
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FIG. 2 (color online). Distributions in Q2
QE and cos& for the

events displayed in Fig. 1 for EQE ¼ 300–475 MeV. Data points
correspond to Figs. 4 and 5 of [4].

 (GeV)QEE

0.2 0.4 0.6 0.8 1 1.2 1.4

ev
en

ts
/M

eV

-0.2

0

0.2

0.4

0.6

0.8 ∆incoh.
ωcoh.

ωincoh.
neutron Compton
proton Compton

∆coh.

FIG. 1 (color online). Single-photon events at MiniBooNE for
6:46' 1020 protons on target in neutrino mode. A 25% effi-
ciency is assumed. The hatched line represents the difference
between the direct calculation and MiniBooNE #0-constrained
incoherent ! ! N$ background. Data points correspond to the
excess events reported in [4], Fig. 2.
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estimate represents just the incoherent, or the sum of
incoherent plus coherent processes. In the latter case, the
difference between the !0-constrained background and the
direct estimates given here would be larger; the ‘‘!’’ and
‘‘coherent !’’ regions in the figures would contribute
different amounts but with the same total.

From the estimates presented here, it may be difficult to
extract the coherent component from other backgrounds.
Doing so would represent the first signal for coherent
single-photon production by the weak neutral current
above the nuclear scale [20].

IV. MINIBOONE !! CROSS SECTIONS

The above procedure may be repeated for antineutrinos.
Figure 3 displays flux-integrated cross sections normalized
according to 3:39! 1020 protons on target from the search
for ""e CCQE events in a primarily ""# beam [5]. A cut

E$ " 140 MeV is applied, and a 25% efficiency has
been assumed, in accordance with a comparison to
MiniBooNE backgrounds in Table II [24]. Again, the
direct estimate of ! ! N$ events is # 2 times larger

than the MiniBooNE estimate; the difference is illustrated
in the figure by including 0.5 times the direct estimate for
these events. The resulting fit for the EQE distribution
yields %2 ¼ 13:3 for 10 d.o.f. Assuming a 20% efficiency
and taking the difference between the estimates of
! ! N$ events from the table, the excess becomes
%11:5& 11:7 and %2:8& 10:0 in the 200–475 and
475–1250 MeV bins, respectively. If no additional inco-
herent ! ! N$ events are included, these numbers
become %6:1& 11:7 and %0:2& 10:0.

V. SUMMARY

Neglected single-photon events give a significant con-
tribution to the MiniBooNE low-energy excess. If the
excess is interpreted as photon events, fits to the data
appear to indicate an enhanced resonant ! ! N$ contri-
bution (either incoherent or coherent) relative to
MiniBooNE estimates based on !0 production [25]. Such
an enhancement is suggested by the model estimates in this
paper, and is consistent with the absence of a significant
excess in the MiniBooNE antineutrino results. A dedicated
efficiency analysis would constrain the overall normaliza-
tion error. Examination of processes such as "#n ! #%p$
could be used to test other sources of uncertainty [27].
More definitive conclusions would require better under-
standing of uncertainties including nuclear corrections. An
enhanced coupling of the neutral weak current and elec-
tromagnetic current to baryons may have interesting astro-
physical implications [8].
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FIG. 3 (color online). Comparison of single-photon events to
MiniBooNE data [5] with other backgrounds subtracted in
antineutrino mode.
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antineutrino mode.

TABLE II. Single-photon and other backgrounds for
MiniBooNE ""-mode in ranges of EQE. Ranges in square brackets
are the result of applying a 20%–30% efficiency correction.

process 200–475 475–1250

1$, non-! 28[5.6–8.4] 17[3.4–5.2]
! ! N$ 58[12–17] 23[4.6–6.9]
""e="e CCQE 81[16–24] 261[52–78]
MB excess %0:5& 11:7 3:2& 10:0
MB ! ! N$ 6.6 2.0
MB ""e="e CCQE 18 43
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neutrino-nucleus cross sections notoriously difficult.     E.g., MiniBooNE excess: deviation from MC in 
never-measured single-photon production, or new physics ?  

What is the uncertainty ?   Is 15% reasonable ?   Recall ~40% uncertainty on basic CCQE 
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Event generators: 
 - typically RFG model at nuclear level (now receiving some attention)
 - antiquated nucleon-level assumptions

[Smith and Moniz 1972]
[Llewellyn Smith 1972]

Essential for next generation experiments to do better with both nucleon-level inputs and nuclear modeling

• experimental data drives theory.   Demand for precision and quantitative predictions leads to new theoretical 
developments that motivate and underpin new experiments.     

- neutrinos, g-2, edm, mu-e, proton decay, n-nbar oscillation, ...

- should be the domain of HEP to study the entire problem.  Can’t outsource. 
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